Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21404, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33899275

RESUMO

We have previously used the genetic diversity available in common inbred mouse strains to identify quantitative trait loci (QTLs) responsible for the differences in angiogenic response using the corneal micropocket neovascularization (CoNV) assay. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. Here, we developed a unique strategy to determine and verify the role of BASP1 in angiogenic pathways. Basp1 expression in cornea had a strong correlation with a haplotype shared by mouse strains with varied angiogenic phenotypes. In addition, inhibition of BASP1 demonstrated a dosage-dependent effect in both primary mouse brain endothelial and human microvascular endothelial cell (HMVEC) migration. To investigate its role in vivo, we knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. These embryos had severely disrupted vessel formation compared to control siblings. We further show that basp1 promotes angiogenesis by upregulating ß-catenin gene and the Dll4/Notch1 signaling pathway. These results, to the best of our knowledge, provide the first in vivo evidence to indicate the role of Basp1 as an angiogenesis-regulating gene and opens the potential therapeutic avenues for a wide variety of systemic angiogenesis-dependent diseases.


Assuntos
Neovascularização da Córnea/patologia , Proteínas de Membrana/metabolismo , Modelos Biológicos , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Movimento Celular , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Via de Sinalização Wnt , Peixe-Zebra
2.
Dev Comp Immunol ; 79: 128-136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080785

RESUMO

Herein, we characterize the Toll-like receptor (TLR)-to-NF-κB innate immune pathway of Orbicella faveolata (Of), which is an ecologically important, disease-susceptible, reef-building coral. As compared to human TLRs, the intracellular TIR domain of Of-TLR is most similar to TLR4, and it can interact in vitro with the human TLR4 adapter MYD88. Treatment of O. faveolata tissue with lipopolysaccharide, a ligand for mammalian TLR4, resulted in gene expression changes consistent with NF-κB pathway mobilization. Biochemical and cell-based assays revealed that Of-NF-κB resembles the mammalian non-canonical NF-κB protein p100 in that C-terminal truncation results in translocation of Of-NF-κB to the nucleus and increases its DNA-binding and transcriptional activation activities. Moreover, human IκB kinase (IKK) and Of-IKK can both phosphorylate conserved residues in Of-NF-κB in vitro and induce C-terminal processing of Of-NF-κB in vivo. These results are the first characterization of TLR-to-NF-κB signaling proteins in an endangered coral, and suggest that these corals have conserved innate immune pathways.


Assuntos
Antozoários/imunologia , NF-kappa B/metabolismo , Receptores Toll-Like/genética , Animais , Evolução Biológica , Sequência Conservada/genética , Humanos , Quinase I-kappa B/metabolismo , Imunidade Inata , Lipopolissacarídeos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptores Toll-Like/metabolismo
3.
PLoS Genet ; 13(6): e1006848, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617813

RESUMO

Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and treatment of a wide variety of angiogenesis-dependent diseases.


Assuntos
Estudo de Associação Genômica Ampla , Hidrolases/genética , Neovascularização Patológica/genética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator 2 de Crescimento de Fibroblastos/genética , Variação Genética , Haplótipos , Humanos , Hidrolases/biossíntese , Camundongos , Camundongos Endogâmicos , Fenótipo , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...